

MATH 105A and 110A Review: Gram-Schmidt process

Facts to Know:

Let \mathcal{B} be the collection of k vectors in \mathbb{R}^n :

$$\mathcal{B} =$$

\mathcal{B} is said to be **orthogonal** if

\mathcal{B} is said to be **orthonormal** if

Given a basis \mathcal{B} for a subspace S of \mathbb{R}^n , then we can use the **The Gram-Schmidt process** to find another for S that is

The **projection operator** is defined by

$$\text{proj}_u x =$$

Gram-Schmidt process for two vectors: Let v_1, v_2 be a basis for a some subspace of \mathbb{R}^n .

1. Set $u_1 =$ Then set $w_1 =$
2. Set $u_2 =$ Then set $w_2 =$

Examples:

1. The basis

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} \right\}$$

is a basis for a plane in \mathbb{R}^3 . Find an orthonormal basis the same plane.